North-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere

Appl Environ Microbiol. 2016 Aug 30;82(18):5595-602. doi: 10.1128/AEM.01545-16. Print 2016 Sep 15.

Abstract

Magnetotactic bacteria (MTB) comprise a phylogenetically diverse group of prokaryotes capable of orienting and navigating along magnetic field lines. Under oxic conditions, MTB in natural environments in the Northern Hemisphere generally display north-seeking (NS) polarity, swimming parallel to the Earth's magnetic field lines, while those in the Southern Hemisphere generally swim antiparallel to magnetic field lines (south-seeking [SS] polarity). Here, we report a population of an uncultured, monotrichously flagellated, and vibrioid MTB collected from a brackish lagoon in Brazil in the Southern Hemisphere that consistently exhibits NS polarity. Cells of this organism were mainly located below the oxic-anoxic interface (OAI), suggesting it is capable of some type of anaerobic metabolism. Magnetosome crystalline habit and composition were consistent with elongated prismatic magnetite (Fe3O4) particles. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that this organism belongs to a distinct clade of the Gammaproteobacteria class. The presence of NS MTB in the Southern Hemisphere and the previously reported finding of SS MTB in the Northern Hemisphere reinforce the idea that magnetotaxis is more complex than we currently understand and may be modulated by factors other than O2 concentration and redox gradients in sediments and water columns.

Importance: Magnetotaxis is a navigational mechanism used by magnetotactic bacteria to move along geomagnetic field lines and find an optimal position in chemically stratified sediments. For that, magnetotactic bacteria swim parallel to the geomagnetic field lines under oxic conditions in the Northern Hemisphere, whereas those in the Southern Hemisphere swim antiparallel to magnetic field lines. A population of uncultured vibrioid magnetotactic bacteria was discovered in a brackish lagoon in the Southern Hemisphere that consistently swim northward, i.e., the opposite of the overwhelming majority of other Southern Hemisphere magnetotactic bacteria. This finding supports the idea that magnetotaxis is more complex than previously thought.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anaerobiosis
  • Brazil
  • Cluster Analysis
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / chemistry
  • DNA, Ribosomal / genetics
  • Gammaproteobacteria / chemistry
  • Gammaproteobacteria / classification*
  • Gammaproteobacteria / genetics
  • Gammaproteobacteria / isolation & purification*
  • Locomotion*
  • Magnetics*
  • Magnetosomes
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Water Microbiology

Substances

  • DNA, Bacterial
  • DNA, Ribosomal
  • RNA, Ribosomal, 16S