Long-term declines in an intertidal foundation species parallel shifts in community composition

Glob Chang Biol. 2017 Jan;23(1):341-352. doi: 10.1111/gcb.13425. Epub 2016 Aug 1.

Abstract

The earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.g., kelp) and animal (e.g., shellfish) species. We quantified changes in the abundance of the blue mussel (Mytilus edulis), a foundation species known to influence diversity and productivity of intertidal habitats, over the past 40 years in the Gulf of Maine, USA, one of the fastest warming regions in the global ocean. Using consistent survey methods, we compared contemporary population sizes to historical data from sites spanning >400 km. The results of these comparisons showed that blue mussels have declined in the Gulf of Maine by >60% (range: 29-100%) at the site level since the earliest benchmarks in the 1970s. At the same time as mussels declined, community composition shifted: at the four sites with historical community data, the sessile community became increasingly algal dominated. Contemporary (2013-2014) surveys across 20 sites showed that sessile species richness was positively correlated to mussel abundance in mid to high intertidal zones. These results suggest that declines in a critical foundation species may have already impacted the intertidal community. To inform future conservation efforts, we provide a database of historical and contemporary baselines of mussel population abundance and dynamics in the Gulf of Maine. Our results underscore the importance of anticipating not only changes in diversity but also changes in the abundance and identity of component species, as strong interactors like foundation species have the potential to drive cascading community shifts.

Keywords: Mytilus edulis; Atlantic; benchmarks; biodiversity; community ecology; foundation species; global change; historical ecology; mussel; population biology.

MeSH terms

  • Animals
  • Atlantic Ocean
  • Biodiversity*
  • Ecosystem
  • Maine
  • Mytilus edulis*
  • Population Density
  • Population Dynamics