We investigated the performance of heterogeneous computing with graphics processing units (GPUs) and many integrated core (MIC) with 20 CPU cores (20×CPU). As a practical example toward large scale electronic structure calculations using grid-based methods, we evaluated the Hartree potentials of silver nanoparticles with various sizes (3.1, 3.7, 4.9, 6.1, and 6.9 nm) via a direct integral method supported by the sinc basis set. The so-called work stealing scheduler was used for efficient heterogeneous computing via the balanced dynamic distribution of workloads between all processors on a given architecture without any prior information on their individual performances. 20×CPU + 1GPU was up to ∼1.5 and ∼3.1 times faster than 1GPU and 20×CPU, respectively. 20×CPU + 2GPU was ∼4.3 times faster than 20×CPU. The performance enhancement by CPU + MIC was considerably lower than expected because of the large initialization overhead of MIC, although its theoretical performance is similar with that of CPU + GPU. © 2016 Wiley Periodicals, Inc.
Keywords: Hartree potential; density functional theory; graphics processing unit; heterogeneous computing; many integrated core.
© 2016 Wiley Periodicals, Inc.