The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-β (TGF-β) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-β1 treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-β1-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-β-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression.
Keywords: EMT; RNA-binding protein; Rbfox family; Rbfox3; lung cancer.