The central motor conduction was studied in 30 normal volunteers using a recently developed magneto-electrical stimulation technique (MES). The results were compared with those obtained by percutaneous electrical stimulation technique (PES) described previously. We made a magnetic stimulator similar to that of Barker et al. To stimulate the motor cortex, the magnetic coil was placed over the head. It was placed over the seventh cervical spinous process (C7) for cervical stimulation, and the first lumbar spinous process (L1) for lumbar stimulation. Cortical stimulation was performed when the subjects were at rest, and also at during weak voluntary contraction in some of them. Recordings were made from the deltoid (Del), biceps brachii (Bi), extensor carpi radialis (ECR), thenar, quadriceps femoris (Quad), tibialis anterior (TA) and flexor hallucis brevis (FHB) muscles with a pair of surface electrodes. The cortical and spinal latent periods (Lcor and Lsp, respectively) were measured. The central conduction time (CCT) was obtained by subtracting Lsp from Lcor for each muscle. In all subjects, responses were readily obtained by cortical, cervical and lumbar stimulations without discomfort in all the muscles examined. The cortical responses with amplitudes of more than 1mV could be recorded even in the lower limb muscles. There were no significant differences in Lsp and CCT between MES and PES, in all the upper limb muscles examined. The Lcors of the lower limb muscles obtained by MES were not different from those obtained by PES. However, the Lsps obtained by MES were significantly shorter than those by PES in the Quad and TA muscles.(ABSTRACT TRUNCATED AT 250 WORDS)