Quantitative proteomic analysis of cell envelope preparations under iron starvation stress in Aeromonas hydrophila

BMC Microbiol. 2016 Jul 22;16(1):161. doi: 10.1186/s12866-016-0769-5.

Abstract

Background: Iron homeostasis is an essential process over the entire lives of both hosts and bacterial pathogens, and also plays roles in many other metabolic functions. Currently, knowledge is limited on the iron scavenging mechanism of the cell envelope in the aquatic pathogen, Aeromonas hydrophila. To understand the iron homeostasis mechanism in A. hydrophila, a dimethyl labelling based quantitative proteomics method was used to compare the differential expression of cell envelope proteins under iron starvation.

Results: A total of 542 cell envelope proteins were identified by LC-MS/MS, with 66 down-regulated and 104 up-regulated proteins. Bioinformatics analysis showed that outer membrane siderophores, heme and iron receptors, periplasmic iron binding proteins, inner membrane ABC transporters and H(+)-ATP synthase subunits increased in abundance while iron-cluster proteins, electron transport chain and redox proteins were down-regulated. Further q-PCR validation, in vivo addition of exogenous metabolites, and an enzyme inhibition assay revealed that redox, the energy generation process, and ATP synthase elevated the susceptibility of A. hydrophila to iron starvation.

Conclusions: Our study demonstrates that the redox and energy generation process, and ATP synthase in A. hydrophila may play critical roles in iron acquisition under conditions of iron-stress. An understanding of the iron scavenging mechanism may be helpful for the development of strategies for preventing and treating A. hydrophila infection.

Keywords: Aeromonas hydrophila; Cell envelope; Dimethyl labeling; Iron homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aeromonas hydrophila / enzymology
  • Aeromonas hydrophila / genetics
  • Aeromonas hydrophila / metabolism*
  • Bacterial Outer Membrane Proteins / biosynthesis
  • Bacterial Outer Membrane Proteins / isolation & purification
  • Bacterial Outer Membrane Proteins / metabolism*
  • Bacterial Outer Membrane Proteins / physiology
  • Bacterial Proteins / biosynthesis
  • Bacterial Proteins / isolation & purification
  • Bacterial Proteins / metabolism
  • Bacterial Proteins / physiology
  • Down-Regulation
  • Electron Transport Chain Complex Proteins
  • Enzyme Activation
  • Enzyme Assays
  • Gene Expression Regulation, Bacterial
  • Heme / metabolism
  • Homeostasis
  • Iron / metabolism*
  • Iron-Binding Proteins
  • Proteomics / methods*
  • RNA, Messenger / analysis
  • Siderophores / metabolism
  • Starvation / metabolism*
  • Stress, Physiological*
  • Tandem Mass Spectrometry
  • Up-Regulation

Substances

  • Bacterial Outer Membrane Proteins
  • Bacterial Proteins
  • Electron Transport Chain Complex Proteins
  • Iron-Binding Proteins
  • RNA, Messenger
  • Siderophores
  • Heme
  • Iron