In this work, the in vitro experiments about biological mechanisms of curcumin were conducted using the gastric cancer cell lines SGC-7901 and BGC-823. After 24-h exposure to curcumin at the concentrations of 5, 10, 15, 20, and 40 μmol/L, two cells showed the decreased proliferation and increased apoptosis abilities. Real-time PCR, Cell Counting Kit-8 (CCK-8) assay, western blotting, and cell apoptosis assay were used to further study the underlying mechanisms of curcumin. The first stage of our studies showed that curcumin affected the expression of miR-33b, which, in turn, affected the expression of the X-linked inhibitor of apoptosis protein (XIAP) messenger RNA (mRNA). Next, curcumin was also identified to regulate the proliferation and apoptosis of SGC-7901 and BGC-823 cells. Further bioinformatics analysis and luciferase reporter assays proved that XIAP was one of the target genes of miR-33b. In the next stage, SGC-7901 and BGC-823 cells were treated with 20 μL curcumin, miR-33b mimics, and small interfering RNA (siRNA) of XIAP, respectively. The results showed that curcumin had similar effects on cell growth and apoptosis as the upregulation of miR-33b and the upregulation of the siRNA of XIAP. The results that followed from the restore experiments showed that curcumin affected cell growth and apoptosis presumably by upregulating the XIAP targeting in gastric cancer. Collectively, our results indicate that curcumin-miR-33b-XIAP coupling might be an important mechanism by which curcumin induces the apoptosis of SGC-7901 and BGC-823 cells.
Keywords: Apoptosis; Curcumin; Gastric cancer; Proliferation; XIAP; miR-33b.