The euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 has an obligate requirement for exogenous vitamin B12 (cobalamin), but little is known about the roles of this compound in cyanobacteria. Bioinformatic analyses suggest that only the terminal enzyme in methionine biosynthesis, methionine synthase, requires cobalamin as a coenzyme in Synechococcus sp. strain PCC 7002. Methionine synthase (MetH) catalyzes the transfer of a methyl group from N(5)-methyl-5,6,7,8-tetrahydrofolate to l-homocysteine during l-methionine synthesis and uses methylcobalamin as an intermediate methyl donor. Numerous bacteria and plants alternatively employ a cobalamin-independent methionine synthase isozyme, MetE, that catalyzes the same methyl transfer reaction as MetH but uses N(5)-methyl-5,6,7,8-tetrahydrofolate directly as the methyl donor. The cobalamin auxotrophy of Synechococcus sp. strain PCC 7002 was complemented by using the metE gene from the closely related cyanobacterium Synechococcus sp. strain PCC 73109, which possesses genes for both methionine synthases. This result suggests that methionine biosynthesis is probably the sole use of cobalamin in Synechococcus sp. strain PCC 7002. Furthermore, a cobalamin-repressible gene expression system was developed in Synechococcus sp. strain PCC 7002 that was used to validate the presence of a cobalamin riboswitch in the promoter region of metE from Synechococcus sp. strain PCC 73109. This riboswitch acts as a cobalamin-dependent transcriptional attenuator for metE in that organism.
Importance: Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph because, like eukaryotic marine algae, it uses a cobalamin-dependent methionine synthase (MetH) for the final step of l-methionine biosynthesis but cannot synthesize cobalamin de novo Heterologous expression of metE, encoding cobalamin-independent methionine synthase, from Synechococcus sp. strain PCC 73109, relieved this auxotrophy and enabled the construction of a truly autotrophic Synechococcus sp. strain PCC 7002 more suitable for large-scale industrial applications. Characterization of a cobalamin riboswitch expands the genetic toolbox for Synechococcus sp. strain PCC 7002 by providing a cobalamin-repressible expression system.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.