Insight into the vasculature of the tumor in small animals has the potential to impact many areas of cancer research. The heterogeneity of the vasculature of a tumor is directly related to tumor stage and disease progression. In this small scale animal study, we investigated the feasibility of differentiating tumors with different levels of vasculature heterogeneity in vivo using a previously developed hybrid magnetic resonance imaging (MRI) and diffuse optical tomography (DOT) system for small animal imaging. Cross-sectional total hemoglobin concentration maps of 10 Fisher rats bearing R3230 breast tumors are reconstructed using multi-wavelength DOT measurements both with and without magnetic resonance (MR) structural a priori information. Simultaneously acquired MR structural images are used to guide and constrain the DOT reconstruction, while dynamic contrast-enhanced MR functional images are used as the gold standard to classify the vasculature of the tumor into two types: high versus low heterogeneity. These preliminary results show that the stand-alone DOT is unable to differentiate tumors with low and high vascular heterogeneity without structural a priori information provided by a high resolution imaging modality. The mean total hemoglobin concentrations comparing the vasculature of the tumors with low and high heterogeneity are significant (p-value 0.02) only when MR structural a priori information is utilized.