Background: Repeated exposure to addictive drugs or alcohol triggers glutamatergic and gamma-aminobutyric acidergic (GABAergic) plasticity in many neuronal populations. The dorsomedial striatum (DMS), a brain region critically involved in addiction, contains medium spiny neurons (MSNs) expressing dopamine D1 or D2 receptors, which form direct and indirect pathways, respectively. It is unclear how alcohol-evoked plasticity in the DMS contributes to alcohol consumption in a cell type-specific manner.
Methods: Mice were trained to consume alcohol using an intermittent-access two-bottle-choice drinking procedure. Slice electrophysiology was used to measure glutamatergic and GABAergic strength in DMS D1- and D2-MSNs of alcohol-drinking mice and control mice. In vivo chemogenetic and pharmacologic approaches were employed to manipulate MSN activity, and their consequences on alcohol consumption were measured.
Results: Repeated cycles of alcohol consumption and withdrawal in mice strengthened glutamatergic transmission in D1-MSNs and GABAergic transmission in D2-MSNs. In vivo chemogenetic excitation of D1-MSNs, mimicking glutamatergic strengthening, promoted alcohol consumption; the same effect was induced by D2-MSN inhibition, mimicking GABAergic strengthening. Importantly, suppression of GABAergic transmission via D2 receptor-glycogen synthase kinase-3β signaling dramatically reduced excessive alcohol consumption, as did selective inhibition of D1-MSNs or excitation of D2-MSNs.
Conclusions: Our results suggest that repeated cycles of excessive alcohol intake and withdrawal potentiate glutamatergic strength exclusively in D1-MSNs and GABAergic strength specifically in D2-MSNs of the DMS, which concurrently contribute to alcohol consumption. These results provide insight into the synaptic and cell type-specific mechanisms underlying alcohol addiction and identify targets for the development of new therapeutic approaches to alcohol abuse.
Keywords: Alcoholism; DREADDs; Dopamine D(2) receptor; Dorsomedial striatum; GABAergic plasticity; GSK3β.
Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.