Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells

Oncotarget. 2016 Aug 23;7(34):54102-54119. doi: 10.18632/oncotarget.10851.

Abstract

Glioblastoma multiforme (GBM) is an aggressive cancer with current therapies only marginally impacting on patient survival. Glioma stem cells (GSCs), a subpopulation of highly tumorigenic cells, are considered major contributors to glioma progression and play seminal roles in therapy resistance, immune evasion and increased invasion. Despite clinical relevance, effective/selective therapeutic targeting strategies for GSCs do not exist, potentially due to the lack of a definitive understanding of key regulators of GSCs. Consequently, there is a pressing need to identify therapeutic targets and novel options to effectively target this therapy-resistant cell population. The precise roles of GSCs in governing GBM development, progression and prognosis are under intense scrutiny, but key upstream regulatory genes remain speculative. MDA-9/Syntenin (SDCBP), a scaffold protein, regulates tumor pathogenesis in multiple cancers. Highly aggressive cancers like GBM express elevated levels of MDA-9 and contain increased populations of GSCs. We now uncover a unique function of MDA-9 as a facilitator and determinant of glioma stemness and survival. Mechanistically, MDA-9 regulates multiple stemness genes (Nanog, Oct4 and Sox2) through activation of STAT3. MDA-9 controls survival of GSCs by activating the NOTCH1 pathway through phospho-Src and DLL1. Once activated, cleaved NOTCH1 regulates C-Myc expression through RBPJK, thereby facilitating GSC growth and proliferation. Knockdown of MDA-9 affects the NOTCH1/C-Myc and p-STAT3/Nanog pathways causing a loss of stemness and initiation of apoptosis in GSCs. Our data uncover a previously unidentified relationship between MDA-9 and GSCs, reinforcing relevance of this gene as a potential therapeutic target in GBM.

Keywords: MDA-9/Syntenin (SDCBP); apoptosis; glioma stem cells; stemness; survival.

MeSH terms

  • Animals
  • Astrocytes / physiology
  • Brain Neoplasms / drug therapy
  • Brain Neoplasms / pathology*
  • Cell Line, Tumor
  • Cell Proliferation
  • Cyclin-Dependent Kinase Inhibitor p27 / physiology
  • Female
  • Glioma / drug therapy
  • Glioma / pathology*
  • Humans
  • Mice
  • Neoplastic Stem Cells / drug effects
  • Neoplastic Stem Cells / physiology*
  • Proto-Oncogene Proteins c-myc / physiology
  • Receptor, Notch1 / physiology
  • STAT3 Transcription Factor / physiology
  • Syntenins / antagonists & inhibitors
  • Syntenins / genetics
  • Syntenins / physiology*

Substances

  • CDKN1B protein, human
  • MYC protein, human
  • Proto-Oncogene Proteins c-myc
  • Receptor, Notch1
  • SDCBP protein, human
  • STAT3 Transcription Factor
  • Syntenins
  • Cyclin-Dependent Kinase Inhibitor p27