Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.