Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin

Angew Chem Weinheim Bergstr Ger. 2015 Dec 1;127(49):14976-14980. doi: 10.1002/ange.201507486. Epub 2015 Oct 16.

Abstract

Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2.

Drei aromatische Reste in der Nähe des katalytischen Zentrums von Ferroxidase sind wichtig für die Eisenmineralisierung. Die Annahme eines kurzlebigen Radikals an Tyr25 ist konsistent mit einem Mechanismus, bei dem zwei Elektronen aus der Fe2+‐Oxidation gleichzeitig auf das oxidierte Ferroxidase‐Zentrum (2×Fe3+) übertragen werden, um die Bildung toxischer reaktiver Sauerstoffspezies zu vermeiden.WILEY-VCH.

Keywords: Bioanorganische Chemie; Eisen; Ferritin; Mineralisierung; Tyrosylradikale.