Background and objective: A crucial factor for proper electrocardiogram (ECG) interpretation is the correct electrode placement in standard 12-lead ECG and extended 16-lead ECG for accurate diagnosis of acute myocardial infarctions. In the context of optimal patient care, we present and evaluate a new method for automated detection of reversals in peripheral and precordial (standard, right and posterior) leads, based on simple rules with inter-lead correlation dependencies.
Methods: The algorithm for analysis of cable reversals relies on scoring of inter-lead correlations estimated over 4s snapshots with time-coherent data from multiple ECG leads. Peripheral cable reversals are detected by assessment of nine correlation coefficients, comparing V6 to limb leads: (I, II, III, -I, -II, -III, -aVR, -aVL, -aVF). Precordial lead reversals are detected by analysis of the ECG pattern cross-correlation progression within lead sets (V1-V6), (V4R, V3R, V3, V4), and (V4, V5, V6, V8, V9). Disturbed progression identifies the swapped leads.
Results: A test-set, including 2239 ECGs from three independent sources-public 12-lead (PTB, CSE) and proprietary 16-lead (Basel University Hospital) databases-is used for algorithm validation, reporting specificity (Sp) and sensitivity (Se) as true negative and true positive detection of simulated lead swaps. Reversals of limb leads are detected with Se = 95.5-96.9% and 100% when right leg is involved in the reversal. Among all 15 possible pairwise reversals in standard precordial leads, adjacent lead reversals are detected with Se = 93.8% (V5-V6), 95.6% (V2-V3), 95.9% (V3-V4), 97.1% (V1-V2), and 97.8% (V4-V5), increasing to 97.8-99.8% for reversals of anatomically more distant electrodes. The pairwise reversals in the four extra precordial leads are detected with Se = 74.7% (right-sided V4R-V3R), 91.4% (posterior V8-V9), 93.7% (V4R-V9), and 97.7% (V4R-V8, V3R-V9, V3R-V8). Higher true negative rate is achieved with Sp > 99% (standard 12-lead ECG), 81.9% (V4R-V3R), 91.4% (V8-V9), and 100% (V4R-V9, V4R-V8, V3R-V9, V3R-V8), which is reasonable considering the low prevalence of lead swaps in clinical environment.
Conclusions: Inter-lead correlation analysis is able to provide robust detection of cable reversals in standard 12-lead ECG, effectively extended to 16-lead ECG applications that have not previously been addressed.
Keywords: Cross-correlation analysis; ECG electrode interchange; ECG pattern progression; Lead swap; Limb leads; Precordial leads.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.