Targeted exome sequencing resolves allelic and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy

Exp Mol Med. 2016 Aug 5;48(8):e251. doi: 10.1038/emm.2016.63.

Abstract

Nephronophthisis-related ciliopathy (NPHP-RC) is a common genetic cause of end-stage renal failure during childhood and adolescence and exhibits an autosomal recessive pattern of inheritance. Genetic diagnosis is quite limited owing to genetic heterogeneity in NPHP-RC. We designed a novel approach involving the step-wise screening of Sanger sequencing and targeted exome sequencing for the genetic diagnosis of 55 patients with NPHP-RC. First, five NPHP-RC genes were analyzed by Sanger sequencing in phenotypically classified patients. Known pathogenic mutations were identified in 12 patients (21.8%); homozygous deletions of NPHP1 in 4 juvenile nephronophthisis patients, IQCB1/NPHP5 mutations in 3 Senior-Løken syndrome patients, a CEP290/NPHP6 mutation in 1 Joubert syndrome patient, and TMEM67/MKS3 mutations in 4 Joubert syndrome patients with liver involvement. In the remaining undiagnosed patients, we applied targeted exome sequencing of 34 ciliopathy-related genes to detect known pathogenic mutations in 7 (16.3%) of 43 patients. Another 18 likely damaging heterozygous variants were identified in 13 NPHP-RC genes in 18 patients. In this study, we report a variety of pathogenic and candidate mutations identified in 55 patients with NPHP-RC in Korea using a step-wise application of two genetic tests. These results support the clinical utility of targeted exome sequencing to resolve the issue of allelic and genetic heterogeneity in NPHP-RC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Alleles
  • Child
  • Child, Preschool
  • Ciliopathies / diagnosis
  • Ciliopathies / genetics*
  • Exome*
  • Female
  • Genetic Heterogeneity
  • Humans
  • Infant
  • Kidney Diseases, Cystic / diagnosis
  • Kidney Diseases, Cystic / genetics*
  • Male
  • Mutation
  • Sequence Analysis, DNA / methods