Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

Nanotoxicology. 2016 Nov;10(9):1341-50. doi: 10.1080/17435390.2016.1214761. Epub 2016 Aug 5.

Abstract

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood-brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modifications) for various times and evaluated their effects on cytotoxicity, proinflammatory mediators, barrier functions and factors involved in ER stress. We demonstrated a time-dependent uptake of all AuNPs and no cytotoxicity for up to 72 h of exposure. Exposure to certain AuNPs resulted in a time-dependent increase in the proinflammatory markers IL-8, MCP-1, sVCAM, sICAM. However, none of the AuNPs induced an increase in expression of the chaperones and stress sensor proteins BiP and GRP94, respectively, or the transcription factors ATF4 and ATF6. Furthermore, no upregulation of the UPR stress sensor receptor PERK, no active splicing product of the transcription factor XBP1 and no upregulation of the transcription factor CHOP were detectable. In conclusion, the results of the present study indicate that effects of different-sized gold nanoparticles modified with various polymers were not related to the induction of ER stress in brain microvascular endothelial cells or led to apoptosis.

Keywords: BiP; blood-brain barrier; cell stress; tight junction proteins; unfolded protein response.

MeSH terms

  • Activating Transcription Factor 4 / metabolism
  • Animals
  • Apoptosis / drug effects
  • Blood-Brain Barrier / drug effects*
  • Blood-Brain Barrier / metabolism
  • Cell Line
  • Cell Survival / drug effects
  • Endoplasmic Reticulum / drug effects
  • Endoplasmic Reticulum / metabolism
  • Endoplasmic Reticulum Stress / drug effects*
  • Endothelial Cells / drug effects*
  • Endothelial Cells / metabolism
  • Gold / chemistry
  • Gold / toxicity*
  • HSP70 Heat-Shock Proteins / metabolism
  • Heat-Shock Proteins / metabolism
  • Humans
  • Interleukin-8 / metabolism
  • Membrane Proteins / metabolism
  • Metal Nanoparticles / chemistry
  • Metal Nanoparticles / toxicity*
  • Particle Size
  • Polymers / chemistry*
  • Risk Factors
  • Transcription Factor CHOP / metabolism

Substances

  • HSP70 Heat-Shock Proteins
  • Heat-Shock Proteins
  • Interleukin-8
  • Membrane Proteins
  • Polymers
  • glucose-regulated proteins
  • Activating Transcription Factor 4
  • Transcription Factor CHOP
  • Gold