Prion Protein and Stage Specific Embryo Antigen 1 as Selection Markers to Enrich the Fraction of Murine Embryonic Stem Cell-Derived Cardiomyocytes

Yonago Acta Med. 2016 Jun 29;59(2):126-34. eCollection 2016 Jun.

Abstract

Background: The prion protein (PrP) might be useful as a tool to collect cardiac progenitor cells derived from embryonic stem (ES) cells. It is also possible that PrP(+) cells include undifferentiated cells with a capacity to develop into tumors.

Methods: PrP(+) cells isolated from embryoid bodies (EB) formed by mouse AB1 ES cells were examined using RT-PCR analysis and clonogeneic cell assay. To assess their potential to differentiate into cardiomyocytes, Nkx2.5(GFP/+) (hcgp7) cells, another ES cell line that carries the GFP reporter gene in the Nkx2.5 loci, were used.

Results: PrP(+) cells isolated from EB of day 7 and 14 did not express pluripotency markers, but expressed cardiac cell markers, while PrP(+) cells isolated from EB of day 21 expressed pluripotency markers. Cultured PrP(+) cells isolated from EB of day 21 expressed pluripotency markers to form colonies, whereas those isolated from EB of day 7 and 14 did not. To exclude proliferating cells from PrP(+) cells, stage specific embryo antigen 1 (SSEA1) was employed as a second marker. PrP(+)/SSEA1(-) cells did not proliferate and expressed cardiac cell markers, while PrP(+)/SSEA1(+) did proliferate.

Conclusion: PrP(+) cells isolated from EB included undifferentiated cells in day 21. PrP(+)/SSEA1(-) cells included cardiomyoctes, suggesting PrP and SSEA1 may be useful as markers to enrich the fraction of cardiomyocytes.

Keywords: cell differentiation; embryonic stem cells; prion protein; stage-specific embryonic antigens.