Background: After lung transplantation (LT), early prediction of grade 3 pulmonary graft dysfunction (PGD) remains a research gap for clinicians. We hypothesized that it could be improved using extravascular lung water (EVLWi) and plasma biomarkers of acute lung injury.
Methods: After institutional review board approval and informed consent, consecutive LT recipients were included. Transpulmonary thermodilution-based EVLWi, plasma concentrations of epithelial (soluble receptor for advanced glycation endproducts [sRAGE]) and endothelial biomarkers (soluble intercellular adhesion molecule-1 and endocan [full-length and cleaved p14 fragment]) were obtained before and after LT (0 [H0], 6, 12, 24, 48 and 72 hours after pulmonary artery unclamping). Grade 3 PGD was defined according to the International Society for Lung and Heart Transplantation definition, combining arterial oxygen partial pressure (PaO2)/inspired fraction of oxygen (FiO2) ratio and chest X-rays. Association of clinical risk factors, EVLWi and biomarkers with grade 3 PGD was analyzed under the Bayesian paradigm, using logistic model and areas under the receiver operating characteristic curves (AUCs).
Results: In 47 LT recipients, 10 developed grade 3 PGD, which was obvious at H6 in 8 cases. Clinical risk factors, soluble intercellular adhesion molecule-1 and endocan (both forms) were not associated with grade 3 PGD. Significant predictors of grade 3 PGD included (1) EVLWi (optimal cutoff, 13.7 mL/kg; AUC, 0.74; 95% confidence interval [CI], 0.48-0.99), (2) PaO2/FiO2 ratio (optimal cutoff, 236; AUC, 0.68; 95% CI, 0.52-0.84), and (3) sRAGE (optimal cutoff, 11 760 pg/mL; AUC, 0.66; 95% CI, 0.41-0.91) measured at H0.
Conclusions: Immediate postreperfusion increases in EVLWi and sRAGE along with impaired PaO2/FiO2 ratios were early predictors of grade 3 PGD at or beyond 6 hours and may trigger early therapeutic interventions.
Trial registration: ClinicalTrials.gov NCT01151826.