In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025-0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25-2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery.
Keywords: Indocyanine green (ICG); colorectal liver metastasis (CRLM); fluorescence imaging; hepatocellular carcinoma (HCC); intraoperative cholangiography; liver resection.