Although increased TNF-α has been considered to cause ineffective hematopoiesis in myelodysplastic syndromes (MDS), the mechanisms of TNF-α elevation are not known. We recently found that c-Fos mRNA stabilization under translation-inhibiting stimuli was impaired in MDS-derived neutrophilic granulocytes. In the current study, we identified overexpression of c-Fos-targeting miR-34a and miR-155 as the cause of impairment. Expression levels of miR-34a but not miR-155 inversely correlated with ratios of c-Fos-positive cells in MDS-derived CD16+ neutrophils (r = -0.618, P<0.05), which were analyzed by flow cytometry. Among the seventeen patients, c-Fos was detectable in less than 60% of CD16+ cells in eight patients (Group A), while five (Group B) expressed c-Fos in more than 80% of CD16+ cells, which was consistent with the controls (88.6 ± 7.8%). Group A-derived granulocytes secreted more TNF-α in response to 1 μM LPS for 3 hours (735.4 ± 237.5 pg/mL) than Group B (143.5 ± 65.7 pg/mL, P<0.05) and healthy controls (150.8 ± 91.5 pg/mL, P<0.05). Knockdown of c-Fos in neutrophil-like differentiated HL60 increased the binding of NF-κB p65 to the promoter region of TNF-α DNA. Thus, c-Fos reduction via overexpression of miR-34a contributes to TNF-α overproduction under inflammatory stimuli in MDS.