The number of protein folds in nature is limited, thus is not surprising that proteins with the same fold are able to exert different functions. The cysteine protease inhibitors that adopt an immunoglobulin- like fold (Ig-ICPs) are inhibitors encoded in bacteria and protozoan parasites. Structural studies indicate that these inhibitors resemble the structure of archetypical proteins with an Ig fold, like antibodies, cadherins or cell receptors. The structure of Ig-ICPs from four different protozoan parasites clearly shows the presence of three loops that form part of a protein-ligand interaction surface that resembles the antigen binding sites of antibodies. Thus, Ig-ICPs bind to different cysteine proteases using a tripartite mechanism in which their BC, DE and FG loops are responsible for the main interactions with the target cysteine protease. Ig-ICPs from different protozoan parasites regulate the enzymatic activity of host or parasite's proteases and thus regulate virulence and pathogenesis.
Keywords: Immunoglobulin fold; cysteine protease inhibitors; cysteine proteases; evolution; parasites; pathogenesis.
Copyright© Bentham Science Publishers; For any queries, please email at [email protected].