Background: In the case of a nuclear or radiological incident, there is a risk of external and internal contamination with radionuclides in addition to external irradiation. There is no consensus whether decorporation treatment should be initiated right away on spec or pending the results of internal dosimetry to determine the indication. Method: Based on biokinetic models for plutonium-239, americium-241 and cesium-137, the efficacy of a decorporation treatment using DTPA or Prussian blue was simulated depending on the initiation time and the duration of treatment for different invasion pathways and physicochemical properties of the inhaled compounds. Results: For the same level of radioactivity incorporated, the committed effective dose increases with the speed of the invasion process. The impact of the initiation time of a decorporation treatment is particularly important when the absorption of the radionuclide is fast. Even if started early after incorporation, the therapeutic efficacy is less for americium-241 or cesium-137 compared to plutonium-239. Therapeutic efficacy increases with treatment duration up to about 90 days for plutonium-239 and cesium-137, whereas a prolongation of the treatment over this limit may further enhance efficacy in the case of americium-241. Conclusion: In the case of a nuclear incident, several fractions with different but a priori unknown physicochemical properties may be inhaled. Thus, decorporation therapy should be started as soon as possible after the incorporation of the radionuclide(s), as a loss of efficacy caused by a delay of treatment initiation possibly cannot be compensated later on. Treatment should be pursued for several months.
© Georg Thieme Verlag KG Stuttgart · New York.