Towards Direct Synthesis of Alane: A Predicted Defect-Mediated Pathway Confirmed Experimentally

ChemSusChem. 2016 Sep 8;9(17):2358-64. doi: 10.1002/cssc.201600338. Epub 2016 Aug 18.

Abstract

Alane (AlH3 ) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2 , indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 10(4) bar expected from bulk thermodynamics.

Keywords: alane; ball milling; catalysis; density funcitonal theory; scanning tunneling microscopy.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aluminum / chemistry*
  • Aluminum Compounds / chemistry*
  • Chemistry Techniques, Synthetic / methods*
  • Models, Molecular
  • Molecular Conformation
  • Surface Properties

Substances

  • Aluminum Compounds
  • Aluminum