A new avenue for obtaining insight into the functional characteristics of long noncoding RNAs associated with estrogen receptor signaling

Sci Rep. 2016 Aug 19:6:31716. doi: 10.1038/srep31716.

Abstract

Estrogen receptor signalling plays important regulatory roles in multiple mammalian physiological processes. Dysregulation of estrogen receptor (ER) expression and/or its associated signalling pathway is strongly associated with the development, progression, transition, and endocrine-resistance of breast cancer. Non-coding transcripts are essential regulators of almost every level of gene regulation. However, few long non-coding transcripts (lncRNAs) associated with the estrogen receptor signalling pathway have been well-described. We used array-based methods to identify 33 estrogen receptor agitation-related (ERAR) lncRNAs. A coding-non-coding gene co-expression network analysis suggested that 15 ERAR lncRNAs were associated with mitosis, DNA damage, and DNA repair. Kaplan-Meier analysis indicated that five ERAR lncRNAs selected using the Random Forest-Recursive Feature Elimination algorithm were significantly correlated with endocrine resistance-free survival and distant metastasis-free survival as well as disease free survival. Our results suggest that ERAR lncRNAs may serve as novel biomarkers for guiding breast cancer treatment and prognosis. Furthermore, our findings reveal a new avenue by which estrogen receptor signalling can be further explored.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Female
  • Humans
  • MCF-7 Cells
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • RNA, Long Noncoding / genetics
  • RNA, Long Noncoding / metabolism*
  • RNA, Neoplasm / genetics
  • RNA, Neoplasm / metabolism*
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / metabolism*
  • Signal Transduction*

Substances

  • Neoplasm Proteins
  • RNA, Long Noncoding
  • RNA, Neoplasm
  • Receptors, Estrogen