Magnetoacoustic tomography with magnetic induction (MAT-MI) for imaging electrical conductivity of biological tissue: a tutorial review

Phys Med Biol. 2016 Sep 21;61(18):R249-R270. doi: 10.1088/0031-9155/61/18/R249. Epub 2016 Aug 19.

Abstract

Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. In the presence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample's electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in recent years. First, the physical mechanisms underlying MAT-MI imaging are described, including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared, together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue.

Publication types

  • Review

MeSH terms

  • Acoustics
  • Electric Conductivity*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetics*
  • Models, Biological*
  • Models, Statistical
  • Tomography, X-Ray Computed*
  • Ultrasonography