Synthesis and antiviral activity of several 2,5'-anhydro analogues of 3'-azido-3'-deoxythymidine, 3'-azido-2',3'-dideoxyuridine, 3'-azido-2',3'-dideoxy-5-halouridines, and 3'-deoxythymidine against human immunodeficiency virus and Rauscher-murine leukemia virus

J Med Chem. 1989 Aug;32(8):1891-5. doi: 10.1021/jm00128a034.

Abstract

Several 2,5'-anhydro analogues of 3'-azido-3'-deoxythymidine (AZT), 3'-azido-2'3'-dideoxyuridine (AZU), 3'-azido-2'3'-dideoxy-5-bromouridine, 3'-azido-2',3'-dideoxy-5-iodouridine, and 3'-deoxythymidine and the 3'-azido derivative of 5-methyl-2'-deoxyisocytidine have been synthesized for evaluation as potential anti-HIV (human immunodeficiency virus) agents. These 2,5'-anhydro derivatives, compounds 13-17, demonstrated significant anti-HIV-1 activity with IC50 values of 0.56, 4.95, 26.5, 27.1, and 48 microM, respectively. Compared to that of the parent compounds AZT and AZU, the respective 2,5'-anhydro analogues, compounds 13 and 14, were somewhat less active. Whereas AZT was cytotoxic with a TCID50 of 29 microM, the toxicity of the 2,5'-anhydro derivative of AZT, compound 13, was reduced considerably to a TCID50 value of greater than 100 microM. The 2,5'-anhydro analogue of 5-methyl-2'-deoxyisocytidine also demonstrated anti-HIV-1 activity with an IC50 value of 12 microM. These compounds were also evaluated against Rauscher-Murine leukemia virus (R-MuLV) in cell culture. Among them, AZT, 3'-azido-2',3'-dideoxy-5-iodouridine, 3'-azido-2',3'-dideoxy-5-bromouridine, and 2,5'-anhydro-3'-azido-3'-deoxythymidine (13) were found to be most active, with IC50 values of 0.023, 0.21, 0.23, and 0.27 microM, respectively.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antiviral Agents / chemical synthesis*
  • Chemical Phenomena
  • Chemistry
  • Deoxyuridine / analogs & derivatives*
  • Deoxyuridine / chemical synthesis
  • Deoxyuridine / pharmacology
  • HIV-1 / drug effects*
  • Rauscher Virus / drug effects*
  • Thymidine / analogs & derivatives*
  • Thymidine / chemical synthesis
  • Thymidine / pharmacology

Substances

  • Antiviral Agents
  • Thymidine
  • Deoxyuridine