PI3K-mTOR Pathway Inhibition Exhibits Efficacy Against High-grade Glioma in Clinically Relevant Mouse Models

Clin Cancer Res. 2017 Mar 1;23(5):1286-1298. doi: 10.1158/1078-0432.CCR-16-1276. Epub 2016 Aug 23.

Abstract

Purpose: The PI3K-AKT-mTOR signaling pathway is frequently activated in glioblastoma and offers several druggable targets. However, clinical efficacy of PI3K/mTOR inhibitors in glioblastoma has not yet been demonstrated. Insufficient drug delivery may limit the efficacy of PI3K/mTOR inhibitors against glioblastoma. The presence of the efflux transporters ABCB1/Abcb1 (P-glycoprotein, MDR1) and ABCG2/Abcg2 (BCRP) at the blood-brain barrier (BBB) restricts the brain penetration of many drugs.Experimental Design: We used in vitro drug transport assays and performed pharmacokinetic/pharmacodynamic studies in wild-type and ABC-transporter knockout mice. The efficacy of PI3K-mTOR inhibition was established using orthotopic allograft and genetically engineered spontaneous glioblastoma mouse models.Results: The mTOR inhibitors rapamycin and AZD8055 are substrates of ABCB1, whereas the dual PI3K/mTOR inhibitor NVP-BEZ235 and the PI3K inhibitor ZSTK474 are not. Moreover, ABCG2 transports NVP-BEZ235 and AZD8055, but not ZSTK474 or rapamycin. Concordantly, Abcb1a/b-/-;Abcg2-/- mice revealed increased brain penetration of rapamycin (13-fold), AZD8055 (7.7-fold), and NVP-BEZ235 (4.5-fold), but not ZSTK474 relative to WT mice. Importantly, ABC transporters limited rapamycin brain penetration to subtherapeutic levels, while the reduction in NVP-BEZ235 brain penetration did not prevent target inhibition. NVP-BEZ235 and ZSTK474 demonstrated antitumor efficacy with improved survival against U87 orthotopic gliomas, although the effect of ZSTK474 was more pronounced. Finally, ZSTK474 prolonged overall survival in Cre-LoxP conditional transgenic Pten;p16Ink4a/p19Arf;K-Rasv12;LucR mice, mainly by delaying tumor onset.Conclusions: PI3K/mTOR inhibitors with weak affinities for ABC transporters can achieve target inhibition in brain (tumors), but have modest single-agent efficacy and combinations with (BBB penetrable) inhibitors of other activated pathways may be required. Clin Cancer Res; 23(5); 1286-98. ©2016 AACR.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • ATP Binding Cassette Transporter, Subfamily G, Member 2 / genetics*
  • Animals
  • Blood-Brain Barrier / drug effects
  • Female
  • Glioma / drug therapy*
  • Glioma / genetics
  • Glioma / pathology
  • Humans
  • Imidazoles / administration & dosage
  • Mice
  • Mice, Knockout
  • Morpholines / administration & dosage
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphoinositide-3 Kinase Inhibitors
  • Quinolines / administration & dosage
  • Signal Transduction / drug effects
  • Sirolimus / administration & dosage
  • TOR Serine-Threonine Kinases / antagonists & inhibitors
  • TOR Serine-Threonine Kinases / genetics*
  • Triazines / administration & dosage

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • Abcg2 protein, mouse
  • Imidazoles
  • Morpholines
  • Phosphoinositide-3 Kinase Inhibitors
  • Quinolines
  • Triazines
  • ZSTK474
  • (5-(2,4-bis((3S)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol
  • MTOR protein, human
  • TOR Serine-Threonine Kinases
  • dactolisib
  • Sirolimus