The highly unidirectional excitation of graphene plasmons (GPs) through near-field interference of orthogonally polarized dipoles is investigated. The preferred excitation direction of GPs by a circularly polarized dipole can be simply understood with the angular momentum conservation law. Moreover, the propagation direction of GPs can be switched not only by changing the phase difference between dipoles, but also by placing the z-polarized dipole to its image position, whereas the handedness of the background field remains the same. The unidirectional excitation of GPs can be extended into arc graphene surface as well. Furthermore, our proposal on directional generation of GPs can be realized in a semiconductor nanowire/graphene system, where a semiconductor nanowire can mimic a circularly polarized dipole when illuminated by two orthogonally polarized plane waves.