High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences

Opt Express. 2016 Aug 22;24(17):19920-33. doi: 10.1364/OE.24.019920.

Abstract

When CCD-based free-space fluorescence molecular tomography (FMT) is used for imaging of fluorescent targets with a large concentration difference, the limited dynamic range of the CCD diminishes the localization and quantitative accuracy of FMT. To overcome this, we present a high-dynamic-range FMT (HDR-FMT) method. Under the multiple-exposure scheme, HDR fluorescence projection images are constructed using the recovered CCD response curve. Image reconstruction is implemented using iterative reweighted L1 regularization which can reduce artifacts by using fewer HDR fluorescence projection images. Phantom and in vivo animal studies indicate that localization of fluorescent targets with a large concentration difference is effectively improved with HDR-FMT and with good quantitative accuracy.