Palmitoleoylation is a unique fatty acylation of proteins in which a monounsaturated fatty acid, palmitoleic acid (C16:1), is covalently attached to a protein. Wnt proteins are known to be palmitoleoylated by cis-Δ9 palmitoleate at conserved serine residues. O-palmitoleoylation plays a critical role in regulating Wnt secretion, binding to the receptors, and in the dynamics of Wnt signaling. Therefore, protein palmitoleoylation is important in tissue homeostasis and tumorigenesis. Chemical probes based on saturated fatty acids, such as ω-alkynyl palmitic acid (Alk-14 or Alk-C16 ), have been used to study Wnt palmitoleoylation. However, such probes require prior conversion to the unsaturated fatty acid by stearoyl-CoA desaturase (SCD) in cells, significantly decreasing their selectivity and efficiency for studying protein palmitoleoylation. We synthesized and characterized ω-alkynyl cis- and trans-palmitoleic acids (cis- and trans-Alk-14:1) as chemical probes to directly study protein palmitoleoylation. We found that cis-Alk-14:1 could more efficiently label Wnt proteins in cells. Interestingly, the DHHC family of palmitoyl acyltransferases can charge both saturated and unsaturated fatty acids, potentially using both as acyl donors in protein palmitoylation and palmitoleoylation. Furthermore, proteomic analysis of targets labeled by these probes revealed new cis- and trans-palmitoleoylated proteins. Our studies provided new chemical tools and revealed new insights into palmitoleoylation in cell signaling.
Keywords: Wnt; chemical probes; fatty acids; palmitoleoylation; palmitoylation.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.