B cell acute lymphoblastic leukemia (B-ALL) exhibits phenotypes reminiscent of normal stages of B-cell development. As demonstrated by flow cytometry, the immunophenotypes are able to determine the stages of B cell development. Multicolor flow cytometry (MFC) is more accurate at identifying cell populations. In this study, 9-color panels, including CD10, CD19, CD20, CD22, CD34, CD79a, CD179a, and IgM, which are sequentially expressed during B cell development, were designed to detect the leukemia cell subpopulations in adult B-ALL patients. In 23 patients at diagnosis, 192 heterogeneous subpopulations of leukemia cells were detected. Compared with their counterparts at diagnosis and after the 1st course of induction therapy, the responses of the subpopulations were also heterogeneous. In the CD10 population, the residual B cell subpopulations in the BCR/ABL patients were obviously reduced compared to those in the BCR/ABL patients. New subpopulations were detected in 22 of 23 patients and were primarily located in the CD34CD10 populations. Subpopulations of clonal evolution were heterogeneous after induction therapy. Our results suggest that the subpopulations in B-ALL patients should be dynamically monitored by development-associated immunophenotyping before, during, and after induction therapy and to predict the prognosis of the disease.