TiO2 is an important material widely used in optoelectronic devices due to its semiconducting and photocatalytic properties, nontoxicity, and chemically inert nature. Some indicative applications include water purification systems and energy harvesting. The use of solution, water-based inks for the direct writing of TiO2 on flexible substrates is of paramount importance since it enables low-cost and low-energy intensive large-area manufacturing, compatible with roll-to-roll processing. In this work we study the effect of crystalline TiO2 and polymer addition on the rheological and direct writing properties of Ti-organic/TiO2 inks. We also report on the bridging crystallite formation from the Ti-organic precursor into the TiO2 crystalline phase, under ultraviolet (UV) exposure or mild heat treatments up to 150 °C. Such crystallite formation is found to be enhanced by polymers with strong polarity and pKα such as polyacrylic acid (PAA). X-ray diffraction (XRD) coupled with Raman and X-ray photoelectron (XPS) spectroscopy are used to investigate the crystalline-phase transformation dependence based on the initial TiO2 crystalline-phase concentration and polymer addition. Transmission electron microscopy imaging and selected area electron diffraction patterns confirm the crystalline nature of such bridging printed structures. The obtained inks are patterned on flexible substrates using nozzle-based robotic deposition, a lithography-free, additive manufacturing technique that allows the direct writing of material in specific, digitally predefined, substrate locations. Photocatalytic degradation of methylene blue solutions highlights the potential of the studied films for chemical degradation applications, from low-cost environmentally friendly materials systems.
Keywords: TiO2; UV treatment; aqueous ink; direct writing; low temperature; photocatalysis.