Exploring Trends in Metal-Metal Bonding, Spectroscopic Properties, and Conformational Flexibility in a Series of Heterobimetallic Ti/M and V/M Complexes (M = Fe, Co, Ni, and Cu)

Inorg Chem. 2016 Dec 5;55(23):12137-12148. doi: 10.1021/acs.inorgchem.6b01543. Epub 2016 Aug 29.

Abstract

To understand the metal-metal bonding and conformational flexibility of first-row transition metal heterobimetallic complexes, a series of heterobimetallic Ti/M and V/M complexes (M = Fe, Co, Ni, and Cu) have been investigated. The titanium tris(phosphinoamide) precursors ClTi(XylNPiPr2)3 (1) and Ti(XylNPiPr2)3 (2) have been used to synthesize Ti/Fe (3), Ti/Ni (4, 4THF), and Ti/Cu (5) heterobimetallic complexes. A series of V/M (M = Fe (7), Co (8), Ni (9), and Cu (10)) complexes have been generated starting from the vanadium tris(phosphinoamide) precursor V(XylNPiPr2)3 (6). The new heterobimetallic complexes were characterized and studied by NMR spectroscopy, X-ray crystallography, electron paramagnetic resonance, and Mössbauer spectroscopy, where applicable, and computational methods (DFT). Compounds 3, 4THF, 7, and 8 are C3-symmetric with three bridging phosphinoamide ligands, while compounds 9 and 10 adopt an asymmetric geometry with two bridging phosphinoamides and one phosphinoamide ligand bound η2 to vanadium. Compounds 4 and 5, on the other hand, are asymmetric in the solid state but show evidence for fluxional behavior in solution. A correlation is established between conformational flexibility and metal-metal bond order, which has important implications for the future reactivity of these and other heterobimetallic molecules.