The lysosome and its associated protein cathe-psin D (Cat D) play critical roles in the pathological process of secondary damage following ischemia/reperfusion (I/R) injury. However, the roles of Cat D in I/R-exposed astrocytesremain unclear. In this study, we determined the roles of Cat D in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis of astrocytes as well as the underlying mechanisms. We found that OGD/R markedly increased cell apoptosis and the production of inflammatory cytokines, namely IL-6, tumor necrosis factor (TNF)-α and FasL in a reperfusion time‑dependent manner and their elevation peaked at 24 h after reperfusion. Moreover, the cytosolic Cat D level and Cat D activity was significantly upregulated in response to OGD/R exposure. Furthermore, OGD/R exposure gradually disrupted the innate acidic conditions of the lysosome. Exogenous TNF-α and FasL administration elevated cytosolic Cat D levels and cell apoptosis whereas TNFR1 and Fas inhibition significantly reversed these effects induced by OGD/R. Cat D overexpression enhanced cell apoptosis and the levels of apoptogenic proteins, including Bax and caspase-3, whereas Cat D siRNA transfection had an inhibitory effect on cell apoptosis and the expression of proapoptotic proteins. In addition, we observed that Cat D upregulation disrupted mitochondrial membrane potential and induced the production of reactive oxygen species. In conclusion, OGD/R injury induced the production of TNF-α, IL-6 and FasL which promoted lysosomal dysfunction and Cat D leakage into the cytoplasm. This eventually resulted in caspase‑dependent apoptosis, mitochondrial membrane potential loss and oxidative stress in astrocytes.