Studies were undertaken to assess the contribution of lipoprotein cholesterol to bile and to determine whether already-existent hepatic free cholesterol and the free cholesterol which is newly generated from the hydrolysis of hepatic cholesteryl esters are equally available for secretion into bile or constitute metabolically separate pools. Rats with a bile fistula were injected with an intravenous bolus of high-density lipoprotein recombinants containing free [14C]cholesterol and [3H]cholesteryl esters. Results showed (1) that bile free [14C]cholesterol secretion was a constant and linear proportion of the whole liver free [14C]cholesterol pool, (2) that secretion into bile of free [3H]cholesterol was in direct proportion to the rate of hydrolysis of hepatic [3H]cholesteryl esters, and (3) that rates of biliary cholesterol secretion were very similar when secretion was calculated using the specific activity of free [14C]cholesterol and free [3H]cholesterol in the entire liver to 'label' the precursor free cholesterol pool. Furthermore, rates of secretion that were calculated using either isotope closely approximated the mass of free cholesterol that was directly measured in bile. Results thus indicate that because of equilibration and extensive dilution by the large pool of already-existent free cholesterol, the transport of isotopic cholesterol from lipoproteins cannot be used to directly assess the contribution of lipoprotein cholesterol to the cholesterol that is secreted in bile. These studies further suggest that the totality of preformed free cholesterol in the liver is in metabolic equilibrium in one single kinetic pool and that all hepatic free cholesterol is potentially available for secretion into bile.