Reduction of auditory event-related potentials (ERPs) to self-initiated sounds has been considered evidence for a predictive model in which copies of motor commands suppress sensory representations of incoming stimuli. However, in studies which involve arbitrary auditory stimuli evoked by sensory-unspecific motor actions, learned associations may underlie ERP differences. Here, in a new paradigm, eye motor output generated auditory sensory input, a naïve action-sensation contingency. We measured the electroencephalogram (EEG) of 40 participants exposed to pure tones, which they produced with either a button-press or volitional saccade. We found that button-press-initiated stimuli evoked reduced amplitude compared to externally initiated stimuli for both the N1 and P2 ERP components, whereas saccade-initiated stimuli evoked intermediate attenuation at N1 and no reduction at P2. These results indicate that the motor-to-sensory mapping involved in speech production may be partly generalized to other contingencies, and that learned associations also contribute to the N1 attenuation effect.
Keywords: Corollary discharge; EEG; N1; Saccadic movements; Sensory suppression.
Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.