Molecular initiating events (MIEs) can be boiled down to chemical interactions. Chemicals that interact must have intrinsic properties that allow them to exhibit this behavior, be these properties stereochemical, electronic, or otherwise. In an attempt to discover some of these chemical characteristics, we have constructed structural alert-style structure-activity relationships (SARs) to computationally predict MIEs. This work utilizes chemical informatics approaches, searching the ChEMBL database for molecules that bind to a number of pharmacologically important human toxicology targets, including G-protein coupled receptors, enzymes, ion channels, nuclear receptors, and transporters. By screening these compounds to find common 2D fragments and combining this approach with a good understanding of the literature, bespoke 2D structural alerts have been written. These SARs form the beginning of a tool for screening novel chemicals to establish the kind of interactions that they may be able to make in humans. These SARs have been run through an internal validation to test their quality, and the results of this are also discussed. MIEs have proven to be difficult to find and characterize, but we believe we have taken a key first step with this work.