Rationale: Regulator of G protein signaling (RGS) proteins act as negative modulators of G protein signaling. RGS4 has been shown to negatively modulate G protein signaling mediated by the delta opioid receptor (DOPr) in vitro. However, the role of RGS4 in modulating DOPr-mediated behaviors in vivo has not been elucidated.
Objective: The aim of this study was to compare the ability of the DOPr agonist SNC80 to induce DOPr-mediated antinociception, antihyperalgesia, antidepressant-like effects, and convulsions in wild-type and RGS4 knockout mice.
Methods: Antinociception was assessed in the acetic acid stretch assay. Antihyperalgesia was measured in a nitroglycerin-induced thermal hyperalgesia assay. Antidepressant-like effects were evaluated in the forced swim and tail suspension tests. Mice were also observed for convulsive activity post-SNC80 treatment. SNC80-induced phosphorylation of MAP kinase in striatal tissue from RGS4 wild-type and knockout mice was quantified by Western blot. DOPr number from forebrain tissue was measured using [3H]DPDPE saturation binding.
Results: Elimination of RGS4 potentiated SNC80-induced antinociception and antihyperalgesia. SNC80-induced antidepressant-like effects were potentiated in RGS4 knockout mice in the forced swim test but not in the tail suspension test. Additionally, RGS4 knockout did not alter SNC80-induced convulsions. SNC80-induced phosphorylation of MAP kinase was potentiated in striatum from RGS4 knockout mice. Loss of RGS4 did not affect total DOPr number.
Conclusions: Overall, these findings demonstrate that reduction of RGS4 functionally may increase the therapeutic index of SNC80. These results provide the first evidence of differential regulation of DOPr-mediated behaviors by RGS proteins and G protein signaling pathways.
Keywords: Antidepressant; Antinociception; Convulsion; Delta opioid receptor; Mice; Regulator of G protein signaling 4.