Proteinase activated receptor-2 counterbalances the vascular effects of endothelin-1 in fibrotic tight-skin mice

Br J Pharmacol. 2017 Nov;174(22):4032-4042. doi: 10.1111/bph.13618. Epub 2016 Oct 5.

Abstract

Background and purpose: The majority of the severe vascular complications in fibrosis are a consequence of a deregulated activity of mediators controlling vasomotor tone. One of the most important of these mediators is endothelin-1 (ET-1). Here, we have investigated the role of proteinase-activated receptor 2 (PAR2) in the vascular dysfunction in a model of fibrosis, using tight-skin (Tsk) mice.

Experimental approach: Aortas were collected from Tsk, transgenic over-expressing PAR2 (TgPAR2), PAR2 deficient (PAR2-/- ) or the corresponding WT mice. Histological and immunohistochemistry analysis for α-smooth muscle actin, PAR2 and ET-1 receptors were performed on aorta sections. Vascular responses to phenylephrine, ET-1 and PAR2 activating peptide (PAR2-AP) were assessed on aortic rings.

Key results: In aortas from Tsk mice, responses to phenylephrine were reduced, contractions to ET-1 were increased and vasorelaxation to PAR2-AP was enhanced. These alterations matched changes observed in whole vessel architecture such as vascular fibre re-organization, increased collagen deposition and enhanced α-smooth muscle actin expression. Expression of both ETA receptors and PAR2 was enhanced in Tsk mice. Antagonism of PAR2 potentiated vascular effects of ET-1, whereas antagonism of ETA receptors increased vasorelaxation induced by PAR2-AP. In TgPAR2 mice, responses to ET-1 and ET-1 plasma levels were reduced. Conversely, PAR2-/- mice showed enhanced ET-1 induced contraction in aortic rings and higher circulating ET-1 levels.

Conclusions and implications: Our data show that PAR2 counterbalanced enhanced contractions to ET-1 in aortas from Tsk mice. PAR2 could represent a possible target for novel drugs in the treatment of vascular complications in fibrosis.

Linked articles: This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.

MeSH terms

  • Animals
  • Aorta, Thoracic / metabolism
  • Aorta, Thoracic / pathology
  • Aorta, Thoracic / physiology*
  • Endothelin-1 / blood
  • Endothelin-1 / physiology*
  • Fibrosis
  • Male
  • Mice
  • Mice, Transgenic
  • Receptor, Endothelin A / metabolism
  • Receptor, Endothelin A / physiology
  • Receptor, PAR-2 / antagonists & inhibitors
  • Receptor, PAR-2 / genetics
  • Receptor, PAR-2 / physiology*

Substances

  • Endothelin-1
  • Receptor, Endothelin A
  • Receptor, PAR-2