Nonhuman primate models of spinal cord injury (SCI) have been widely used in evaluation of the efficacy and safety of experimental restorative interventions before clinical trials. However, no objective methods are currently available for the evaluation of neural function in nonhuman primates. In our long-term clinical practice, we have used evoked potential (EP) for neural function surveillance during operation and accumulated extensive experience. In the present study, a nonhuman primate model of SCI was established in 6 adult cynomologus monkeys through spinal cord contusion injury at T8-T9. The neural function before SCI and within 6 months after SCI was evaluated based on EP recording. A scoring system including somatosensory evoked potentials (SSEPs) and transcranial electrical stimulation-motor evoked potentials (TES-MEPs) was established for the evaluation of neural function of nonhuman primates with SCI. We compared the motor function scores of nonhuman primates before and after SCI. Our results showed that the EP below the injury level significantly changed during the 6 months after SCI. In addition, a positive correlation was identified between the EP scores and motor function. The EP-based scoring system is a reliable approach for evaluating the motor function changes in nonhuman primates with SCI.