Number concentration of nanoparticles is a critical and challenging parameter to be identified. Recently, gravimetric strategy is a fundamental method for absolute quantification, which is widely accepted and used by researchers, yet limited by the inaccuracy in measuring related parameters (e.g, density). Hence, we introduced isopycnic gradient centrifugation to determine the nanopartices' density and improved the current gravimetric method for more accuracy. In this work, polymer nanospheres were used as a model to validate this method. Through isopycnic gradient centrifugation, nanospheres finally reached the zone of equal density as them. By measuring the density of the medium solution in this zone, the nanospheres' density was identified. Then, the density was multiplied by the volume of a single nanosphere characterized by transmission electron microscopy (TEM), and the average weight of a single nanosphere was obtained. Using total weight of the nanospheres divided by the unit weight, their number concentration was quantified. Directly using the real density of the nanoparticles achieved more accurate quantification than the current gravimetric method which used the density of the bulk material counterparts for calculation. Besides, compared with the viscosity/light scattering method and the high-sensitivity flow cytometry (HSFCM) method (another two kinds of typical methods respectively based on light measurements and single particle counting), the improved gravimetric method showed better reproducibility and more convenience. Further, we modified the nanospheres with streptavidin (SA) and antibody, and through biorecognition interaction, we determined the amount of the active affinity sites on each biofunctional nanosphere. Moreover, their bioactivity in different storage conditions was monitored, which showed good stability even in PBS at 4 °C over one year. Our work provided a promising method for more accurately determining the absolute number concentration of nanoparticles and the active affinity sites on their surfaces, which would greatly facilitate their downstream applications.