The endolysin from the Enterococcus faecalis bacteriophage VD13 and conditions stimulating its lytic activity

FEMS Microbiol Lett. 2016 Oct 1;363(19):fnw216. doi: 10.1093/femsle/fnw216.

Abstract

Bacteriophages produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can lyse Gram-positive bacteria when added exogenously. As a potential alternative antimicrobial, we cloned and expressed the enterococcal VD13 bacteriophage endolysin. VD13 endolysin has a CHAP catalytic domain with 92% identity with the bacteriophage IME-EF1 endolysin. The predicted size of VD13 endolysin is ∼27 kDa as verified by SDS-PAGE. The VD13 endolysin lyses Enterococcus faecalis strains, but not E. faecium or other non-enterococci. VD13 endolysin has activity from pH 4 to pH 8, with peak activity at pH 5, and exhibits greater activity in the presence of calcium. Optimum activity at pH 5 occurs in the absence of NaCl. VD13 endolysin, in ammonium acetate (C2H3O2NH4) calcium chloride (CaCl2) buffer pH 5, is stimulated to higher activity upon heating at temperatures up to 65°C for 30 min, whereas activity is lost upon heating to 42°C, in pH 7 buffer.

Keywords: Enterococcus faecalis; VD13; endolysin; peptidoglycan hydrolase.