The thalamus consists of multiple nuclei that have been previously defined by their chemoarchitectual and cytoarchitectual properties ex vivo. These form discrete, functionally specialized, territories with topographically arranged graduated patterns of connectivity. However, previous in vivo thalamic parcellation with MRI has been hindered by substantial inter-individual variability or discrepancies between MRI derived segmentations and histological sections. Here, we use the Euclidean distance to characterize probabilistic tractography distributions derived from diffusion MRI. We generate 12 feature maps by performing voxel-wise parameterization of the distance histograms (6 feature maps) and the distribution of three-dimensional distance transition gradients generated by applying a Sobel kernel to the distance metrics. We use these 12 feature maps to delineate individual thalamic nuclei, then extract the tractography profiles for each and calculate the voxel-wise tractography gradients. Within each thalamic nucleus, the tractography gradients were topographically arranged as distinct non-overlapping cortical networks with transitory overlapping mid-zones. This work significantly advances quantitative segmentation of the thalamus in vivo using 3T MRI. At an individual subject level, the thalamic segmentations consistently achieve a close relationship with a priori histological atlas information, and resolve in vivo topographic gradients within each thalamic nucleus for the first time. Additionally, these techniques allow individual thalamic nuclei to be closely aligned across large populations and generate measures of inter-individual variability that can be used to study both basic function and pathological processes in vivo.
Keywords: Connectivity; Diffusion weighted imaging; Segmentation; Spiral loops; Thalamus; Tractography.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.