Is RASSF5 a tumor suppressor or activator? RASSF5 links K-Ras and the Hippo pathway. Hippo's signaling promotes YAP1 phosphorylation and degradation. YAP1 overexpression promotes cancer. Most reports point to RASSF5 suppressing cancer; however, some point to its promoting cancer. Our mechanistic view explains how RASSF5 can activate MST1/2 and suppress cancer in vivo; but inhibits MST1/2 in vitro. We propose that both activation and inhibition of MST1/2 can take place via SARAH heterodimerization. Our thesis in vivo, membrane-anchored Ras dimers (or nanoclusters) can promote SARAH domain heterodimerization, Raf-like MST1/2 kinase domain homodimerization and trans-autophosphorylation. In contrast, in vitro, K-Ras binding also releases the RASSF5 SARAH stimulating MST1/2's SARAH heterodimerization; however, without membrane, no MST1/2 kinase domain homodimerization/trans-autophosphorylation.
Copyright © 2016 Elsevier Ltd. All rights reserved.