Objective: The patterns of estimated glomerular filtration rate (eGFR) decline to end-stage renal disease (ESRD) in patients with type 1 diabetes has not been conclusively described. Decline could be linearly progressive to ESRD but with a variable rate. Conversely, decline may be linear but interrupted by periods of plateaus or improvements.
Research design and methods: This observational study included 364 patients with type 1 diabetes attending the Joslin Clinic who developed ESRD between 1991 and 2013. We retrieved serum creatinine measurements from clinic visits or research examinations up to 24 years (median 6.7 years) preceding the onset of ESRD. Using serial measurements of serum creatinine to estimate renal function (eGFR), we used regression-based spline methods and a data smoothing approach to characterize individual trajectories of eGFR over time for the 257 patients with five or more data points.
Results: The rate of eGFR decline per year ranged widely, from -72 to -2 mL/min/1.73 m2 (median -8.5). The trajectories, as characterized with linear regression-based spline models, were linear or nearly so for 87% of patients, accelerating for 6%, and decelerating for 7%. Smoothed trajectories evaluated by a Bayesian approach did not significantly depart from a linear fit in 76%.
Conclusions: The decline of eGFR in type 1 diabetes is predominantly linear. Deviations from linearity are small, with little effect on the expected time of ESRD. A single disease process most likely underlies renal decline from its initiation and continues with the same intensity to ESRD. Linearity of renal decline suggests using slope reduction as the measure of effectiveness of interventions to postpone ESRD.
© 2016 by the American Diabetes Association.