Silencing of CXCR2 and CXCR7 protects against esophageal cancer

Am J Transl Res. 2016 Aug 15;8(8):3398-408. eCollection 2016.

Abstract

This study was aimed to investigate the functional roles of cytokine receptor (CXCR) CXCR2 and CXCR7 in esophageal cancer (EC). Specific small interfering RNAs (siRNA) against CXCR2 and CXCR7 were transfected into EC cell lines TE-1, EC9706, and EC109 cells. Expression of CXCR2 and CXCR7 was validated, along with cell viability, chemotaxis, apoptosis rate, and ERK1/2 pathways associated protein after transfection. Moreover, EC9706 cells treated with or without CXCR2/7 siRNA were injected into athymic nude mice. Tumor volumes were measured. Besides, immunohistochemical (IHC) staining was performed to investigate the expression of CXCR2/7 in adjacent normal tissues and tumor tissues from esophageal squamous cell carcinoma (ESCC) patients. Also, the associations between CXCR2/7 expression and clinicopathological features and progression were explored. The mRNA levels of CXCR2 and CXCR7 were significantly reduced after transfection. Silencing of CXCR2 and CXCR7 statistically decreased cell viability and chemotaxis, and increased apoptotic rate. Cells invasion was significantly reduced by silencing of CXCR2, however, no significance was found in silencing of CXCR7. The protein levels of pERK1/2 were significantly decreased by silencing of CXCR2 and CXCR7. Besides, silencing of CXCR2 and CXCR7 significantly reduced tumor growth in vivo, and associated with clinicopathological features and progression. Silencing of CXCR2 and CXCR7 protects against EC by inhibiting cell growth and chemotaxis, and inducing apoptosis though ERK1/2 pathways. Silencing of CXCR2 and CXCR7 has potentially therapeutic target for EC.

Keywords: CXCR2; CXCR7; Esophageal cancer; SiRNA; clinicopathological features; progression.