Rapamycin inhibits prostate cancer cell growth through cyclin D1 and enhances the cytotoxic efficacy of cisplatin

Am J Cancer Res. 2016 Aug 1;6(8):1772-84. eCollection 2016.

Abstract

Prostate cancer is the most common malignancy in Western men and hormone refractory cancer (HRPC) kills most of the patients. Chemo-resistance is a major obstacle for the treatment of prostate cancer. Platinum-complexes have been used to treat a number of malignancies including prostate cancer. However, it has limited effect to prostate cancer and with significant toxicity at higher doses. In recent years, increasing numbers of new agents targeting cancer specific pathways have become available and with low toxic side-effects. Rapamycin (Sirolimus) is an mTORC1 inhibitor, which inhibits the PI3K/Akt/mTOR signaling pathway, which is commonly altered in prostate cancer. We determined the expression of cyclin D1 and phosphorylated-mTOR proteins in association with the response to rapamycin in two androgen sensitive (22RV1 and LNCaP) and two androgen independent (DU145 and PC3) prostate cancer cell lines and found that the base-line and changes of cyclin D1 level, but not the expression level of p-mTOR, correlated with rapamycin sensitivity. We evaluated the cell killing effect of combined rapamycin and cisplatin treatment and showed that the combination had a more than additive effect in both androgen dependent and independent prostate cancer cells, which may be partially explained by the reduction of cyclin D1 expression by rapamycin. We also evaluated a range of combined treatment schedules, simultaneously or sequentially and found that continuous rapamycin treatment after a short cisplatin exposure was effective. The clinical application of these findings for prostate cancer treatment should be further investigated.

Keywords: Prostate cancer; cisplatin; cyclin D1 expression; mTOR; rapamycin.