Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging

Biomed Res Int. 2016:2016:6381464. doi: 10.1155/2016/6381464. Epub 2016 Aug 29.

Abstract

A folate-polyethylene glycol-chitosan derivative was synthesized and its structure was characterized. An optimal perfluorooctyl bromide nanocore template was obtained via utilizing the ultrasonic emulsification method combining with orthogonal design. The targeted nanoparticles containing targeted shell of folate-polyethylene glycol-chitosan derivative and perfluorooctyl bromide nanocore template of ultrasound imaging were prepared successfully by exploiting layer-by-layer self-assembly as contrast agent for ultrasound. Properties of the novel perfluorooctyl bromide nanoparticle were extensively studied by Dynamic Light Scattering and Transmission Electron Microscopy. The targeted nanoparticle diameter, polydispersity, and zeta potential are around 229.5 nm, 0.205, and 44.7 ± 0.6 mV, respectively. The study revealed that spherical core-shell morphology was preserved. Excellent stability of targeted nanoparticle is evidenced by two weeks of room temperature stability tests. The results of the cell viability assay and the hemolysis test confirmed that the targeted nanoparticle has an excellent biocompatibility for using in cell studies and ultrasound imaging in vivo. Most importantly, in vitro cell experiments demonstrated that an increased amount of targeted nanoparticles was accumulated in hepatocellular carcinoma cell line Bel7402 relative to hepatoma cell line L02. And targeted nanoparticles had also shown better ultrasound imaging abilities in vitro. The data suggest that the novel targeted nanoparticle may be applicable to ultrasonic molecular imaging of folate-receptor overexpressed tumor.

MeSH terms

  • Carcinoma, Hepatocellular / diagnosis*
  • Carcinoma, Hepatocellular / metabolism
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Contrast Media / chemistry*
  • Diagnostic Imaging / methods
  • Drug Stability
  • Fluorocarbons / chemistry*
  • Folic Acid / metabolism*
  • Hemolysis / drug effects
  • Humans
  • Hydrocarbons, Brominated
  • Liver Neoplasms / diagnosis*
  • Liver Neoplasms / metabolism
  • Materials Testing / methods
  • Nanoparticles / chemistry*
  • Particle Size
  • Receptors, Cell Surface / metabolism*
  • Temperature
  • Ultrasonography / methods

Substances

  • Contrast Media
  • Fluorocarbons
  • Hydrocarbons, Brominated
  • Receptors, Cell Surface
  • Folic Acid
  • perflubron