4C methods are useful to investigate dependencies between regulatory mechanisms and chromatin structures by revealing the frequency of chromatin contacts between a locus of interest and remote sequences on the chromosome. In this chapter we describe a protocol for the data analysis of microarray-based 4C experiments, presenting updated versions of the methods we used in a previous study of the large-scale chromatin interaction profile of a Polycomb response element in Drosophila. The protocol covers data preparation, normalization, microarray probe selection, and the multi-resolution detection of regions with enriched chromatin contacts. A reanalysis of two independent mouse datasets illustrates the versatility of this protocol and the importance of data processing in 4C. Methods were implemented in the R package MRA.TA (Multi-Resolution Analyses on Tiling Array data), and they can be used to analyze ChIP-on-chip data on broadly distributed chromatin components such as histone marks.
Keywords: 4C; Bioinformatics; Chromatin; Chromosome Conformation Capture; Epigenetics; Microarray; Multi-resolution statistics; Normalization; Polycomb.