The tumor microenvironment is pivotal in influencing cancer progression and metastasis. Different cells co-exist with high spatial diversity within a patient, yet their combinatorial effects are poorly understood. We investigate the similarity of the tumor microenvironment of 192 local metastatic lesions in 61 ovarian cancer patients. An ecologically inspired measure of microenvironmental diversity derived from multiple metastasis sites is correlated with clinicopathological characteristics and prognostic outcome. We demonstrate a high accuracy of our automated analysis across multiple sites. A low level of similarity in microenvironmental composition is observed between ovary tumor and corresponding local metastases (stromal ratio r = 0.30, lymphocyte ratio r = 0.37). We identify a new measure of microenvironmental diversity derived from Shannon entropy that is highly predictive of poor overall (p = 0.002, HR = 3.18, 95% CI = 1.51-6.68) and progression-free survival (p = 0.0036, HR = 2.83, 95% CI = 1.41-5.7), independent of and stronger than clinical variables, subtype stratifications based on single cell types alone and number of sites. Although stromal influence in ovary tumors is known to have significant clinical implications, our findings reveal an even stronger impact orchestrated by diverse cell types. Quantitative histology-based measures can further enable objective selection of patients who are in urgent need of new therapeutic strategies such as combinatorial treatments targeting heterogeneous tumor microenvironment.
Keywords: automated image analysis; ecological diversity; high-grade serous ovarian cancer; locally advanced disease; tumor microenvironment.